
Python-Project-Skeleton
Release 0.3.1

Joao MC Teixeira

Jan 22, 2021

CONTENTS

1 Python Package Skeleton Template 1
1.1 Summary . 1
1.2 Motivation . 2
1.3 Acknowledgments . 2
1.4 How to use this repository . 2
1.5 Version . 3

2 Repository Configuration 5
2.1 Branch organization . 5
2.2 Project Layout . 5
2.3 CI Platforms . 6
2.4 Read the Docs . 10
2.5 Badges . 11

3 Installation 13
3.1 Installation Example . 13
3.2 How to use this Template . 13

4 Usage 15

5 Contributing 17
5.1 Fork this repository . 17
5.2 Install for developers . 17
5.3 Branch workflow . 18
5.4 Uniformed Tests . 19
5.5 Bumpversion . 20

6 Source documentation 21
6.1 sampleproject . 21
6.2 AModule . 21
6.3 Libs . 21

7 Changelog 23
7.1 v0.3.1 (2021-01-22) . 23
7.2 v0.3.0 (2021-01-22) . 23
7.3 v0.2.2 (2021-01-22) . 23
7.4 v0.2.1 (2020-05-31) . 23
7.5 v0.2.0 (2020-01-31) . 24
7.6 v0.1.0 (2019-10-03) . 24

8 Authors 25

i

9 Indices and tables 27

Python Module Index 29

Index 31

ii

CHAPTER

ONE

PYTHON PACKAGE SKELETON TEMPLATE

1.1 Summary

This is a project skeleton template for a Python project/library. This repository implements and explains the latest
practices in team software development and deployment within a continuous integration framework. Note that is
impossible for me to cover all strategies available in the wild. This repository covers the needs of my Python projects,
which include:

• a robust Python library/application file hierarchy with packages, modules, clients

– detailed, yet simple, setup.py

– the special use of the src directory

– examples of Python command-line interfaces

• unique testing framework for developers with tox and pytest

– assures tests are reproducible across developers platforms

– assures same lint rules are always applied

– assures all desired Python versions are covered

• continuous integration with GitHub Actions

– automatic testing on Linux, MacOS, and Windows

– automatic testing upon deployment with tox

– test coverage report to Codecov

– automatic version bump with bump2version

– automatic git tagging and Python packaging to PyPI

1

https://github.com/joaomcteixeira/python-project-skeleton/actions?workflow=CI
https://codecov.io/gh/joaomcteixeira/python-project-skeleton
https://app.codacy.com/manual/joaomcteixeira/python-project-skeleton/dashboard
https://codeclimate.com/github/joaomcteixeira/python-project-skeleton
https://codeclimate.com/github/joaomcteixeira/python-project-skeleton
https://python-project-skeleton.readthedocs.io/en/latest/index.html
https://tox.readthedocs.io/en/latest/
https://docs.pytest.org/en/stable/
https://github.com/features/actions
https://about.codecov.io/
https://github.com/c4urself/bump2version
https://pypi.org

Python-Project-Skeleton, Release 0.3.1

1.2 Motivation

To understand and implement in the best practices in software development and deployment for scientific software.
Actually, I believe the strategy reviewed here can be applied to most Python library projects.

This repository does not intent to be a cookiecutter-like repository. Though there are many and very well documented
cookiecutter templates out there, even for scientific software, when I initiated my adventure in developing Python
libraries I decided that using a cookiecutter would lead me to nowhere because I would miss what was actually being
automatized. Hence, assembling this template repository from scratch was the only and best approach to achieve a
minimum understanding of the best practices and protocols on the matter. Now, this repository serves as a reference
guide for all my projects and I try to keep it up to date to my needs and changes in the CI ecosystem.

1.3 Acknowledgments

The Python library organization itself was strongly influenced by ionel discussions in his blog post about Packaging a
python library. I really recommend reading through that post and the related posts in his blog.

I setup the CI pipeline with bits from many places. Kudos to python-nameless and cookiecutter-pylibrary two reposito-
ries that served as main source of information for the python-project-skeleton repository, specially in the first versions
with Travis and Appveyor.

When migrating to GitHub Actions, I want to thank @JoaoRodrigues for the workflows in pdb-tools, ymyzk for the
tox-gh-actions package, and structlog, which was also a repository I used as a reference to build test latest version
here.

I reference other important sources of information as comments in the specific files. Thanks everyone for keeping
discussions out there open.

1.4 How to use this repository

The repository simulates the implementation of a sampleproject. Here, sampleproject is the Python name
of your project, that which will be import sampleproject. So everywhere you find sampleproject just replace with
the name of your project.

In setup.py the project has the name jmct-sampleproject because sampleprojet was already in use
in test.pypi.org, as expected. Substitute that by the name of you package. Normally, it as the same name as
sampleproject.

You will find in the project’s documentation all references that motivated the current configuration as well as detailed
explanation on the different configuration files.

I intent to keep this repository up to date to my knowledge and needs. Your feedback and suggestions are highly
appreciated, please raise an issue and share your thoughts.

2 Chapter 1. Python Package Skeleton Template

https://cookiecutter.readthedocs.io/en/latest/index.html
https://github.com/MolSSI/cookiecutter-cms
https://github.com/ionelmc
https://blog.ionelmc.ro/2014/05/25/python-packaging/
https://github.com/ionelmc/python-nameless
https://github.com/ionelmc/cookiecutter-pylibrary
https://github.com/haddocking/pdb-tools
https://github.com/ymyzk/tox-gh-actions
https://github.com/hynek/structlog
https://test.pypi.org
https://python-project-skeleton.readthedocs.io/en/latest/index.html
https://github.com/joaomcteixeira/python-project-skeleton/issues

Python-Project-Skeleton, Release 0.3.1

1.5 Version

v0.3.1

1.5. Version 3

Python-Project-Skeleton, Release 0.3.1

4 Chapter 1. Python Package Skeleton Template

CHAPTER

TWO

REPOSITORY CONFIGURATION

This page explains how this template repository is organized by detailing the building blocks of the project skeleton.

2.1 Branch organization

Two main branches set the development workflow: the master branch and the latest branch. The latest branch is
thought to evolve according to continuous integration practices, and is referred as the latest build or version; while, on
the other hand, the master branch is considered the stable or production version. Under this configuration the master
branch receives updates from the latest build periodically or when a new version/patch is ready for deployment. Read
further about Branch workflow.

2.2 Project Layout

The project layout follows the src, tests, docs and devtools folders layout.

2.2.1 The src layout

I have discovered that storing the source library folder under a src directory instead of directly in the project’s root is
by far the most controversial point out there on the wild Internet. Here I adopted the src-based layout discussed by
ionel in his blog post. When reading through the discussed arguments, I found this strategy to have many advantages
over the common root directory layout and no added disadvantage.

In detail, though encapsulating the source in a src directory is an uncommon practice in Python projects, adopting
this practice avoids unexpected and uncontrolled code imports that could lead to wrong testing operations, as well
stated by ionel, see his src-nosrc example. On the same hand, encapsulating the source under a src directory does not
create any additional problems that would be avoided by the standard layout with source directly on a rootdir-based
folder, usually named the same as the package name.

5

https://github.com/joaomcteixeira/python-project-skeleton/tree/master
https://github.com/joaomcteixeira/python-project-skeleton/tree/latest
https://github.com/ionelmc
https://blog.ionelmc.ro/2014/05/25/python-packaging/
https://github.com/ionelmc
https://github.com/ionelmc/python-packaging-blunders

Python-Project-Skeleton, Release 0.3.1

2.2.2 tests

Tests are nicely encapsulated in a tests folder. With this encapsulation, outside the library folder, it is easier to con-
trol that tests do not import from relative paths and can only access the library code after library installation (whatever
the installation mode is). Also, having tests in a separated folder facilitates the configuration files layout on exclud-
ing tests from deployment (MANIFEST.in) and code quality (.codacy.yaml) or coverage (.coveragerc).

2.2.3 docs

All documentation related files are stored in a docs folder. These include files related to the library documentation
but also with the development process, such as: AUTHORS, CONTRIBUTING, CHANGELOG, etc.

2.2.4 devtools

The devtools folder hosts the files related to development. Here I used the idea explained by Chodera Lab in
their structuring your project guidelines, though for other issues described previously, I do not follow their guides, as
explained in context.

2.3 CI Platforms

Here we provide an overview of the implementation strategies for the different continuous integration and quality
report platforms. We have adopted a total of seven platforms, two for building and testing, two for code quality
control, two for test coverage and one for documentation deployment:

1. Building and testing

• Travis-CI (Linux and OSX)

• Appveyor (Windows)

2. Quality Control

• Codacy

• Code Climate

3. Test Coverage

• Codecov

• Coveralls

4. Documentation

• Read the Docs

We acknowledge the existence of many other platforms for the same purposes. Though, we have chosen these because
they fit the size and scope of the projects to which this template aims at and are those platforms most used within our
field of development.

6 Chapter 2. Repository Configuration

https://github.com/choderalab
https://github.com/choderalab/software-development/blob/master/STRUCTURING_YOUR_PROJECT.md

Python-Project-Skeleton, Release 0.3.1

2.3.1 Choosing the CIs

Please note that you do not need to use all these platforms when adapting this template for your project, we do
suggest you use at least one for each topic. For example, you do not need to activate Appveyor if you do not intent to
deploy/distribute your code for Windows machines. Also, for quality control and test coverage one of the two provided
options may suffice, however, having both is free and you can benefit from the different analysis reports the platforms
provide.

Note: To NOT use a specific CI platform simply do not activate it in their website, remove the configuration file from
the root directory of the project, and remove the badge image link from the README.rst file. Continue reading to
understand better these concepts.

2.3.2 Activate CI

To activate the different CI platforms for you repository just navigate to their website, login with your GitHub account
and activate the repository. The configurations provided in this template should to the rest automatically :-), just
start pushing your commits to the server.

2.3.3 Travis-CI

The configuration for Travis-CI is defined in the .travis.yml file.

Overall, the Travis configuration defines how to execute the different tox environments defined in the tox.ini file.

Find in the .travis.yml file the complete explanation for the implementation proposed, here we mirror the file:

Todo: Configure Travis to run OSX tests.

2.3.4 Appveyor

The configuration for AppVeyor-CI is defined in the .appveyor.yml file.

Contrary to our configuration for Travis-CI, with Appveyor, the configuration file simply attempts to build the package
and run the unittests battery in the different Python versions.

Find in the .appveyor.yml_ file the complete explanation for the implementation proposed, here we mirror the file:

2.3.5 Codacy

There is not much to configure for Codacy in the version we propose in this template. The only setup provided is to
exclude the analysis of test scripts, this configuration is provided by the .codacy.yaml file at the root director of
the repository. If you wish Codacy to perform quality analysis on your test scripts just remove the file or comment the
line. Here we mirror the .codacy.yaml file:

exclude_paths:
- 'tests/**'

2.3. CI Platforms 7

https://travis-ci.org
https://github.com/joaomcteixeira/python-project-skeleton/blob/latest/.travis.yml
https://www.appveyor.com/
https://github.com/joaomcteixeira/python-project-skeleton/blob/latest/.codacy.yaml

Python-Project-Skeleton, Release 0.3.1

2.3.6 Code Climate

There is not much to configure for Code Climate in the version we propose in this template. The only setup provided
is to exclude the analysis of test scripts and other dev files Code Climate by default analysis, this configuration is
provided by the .codeclimate.yml file at the root director of the repository. If you wish Code Climate to perform
quality analysis on your test scripts just remove the file or comment the line.

Code Climate provides a technical debt percentage that can be retrieved nicely with a badge<Badges>

Here we mirror the .codeclimate.yml file:

version: "2" # required to adjust maintainability checks
checks:

argument-count:
enable: false

complex-logic:
config:

threshold: 4
file-lines:
config:

threshold: 2000
method-complexity:
config:

threshold: 5
method-count:
config:

threshold: 20
method-lines:
config:

threshold: 25
nested-control-flow:
config:

threshold: 4
return-statements:
config:

threshold: 4
similar-code:
config:

threshold: # language-specific defaults. an override will affect all languages.
identical-code:
config:

threshold: # language-specific defaults. an override will affect all languages.
plugins:

radon:
enabled: true
config:

threshold: "C"
python_version: 3

bandit:
enabled: true

sonar-python:
enabled: true
config:

tests_patterns:
- tests/**

minimum_critial: major
editorconfig:
enabled: false

(continues on next page)

8 Chapter 2. Repository Configuration

https://codeclimate.com/
https://github.com/joaomcteixeira/python-project-skeleton/blob/latest/.codeclimate.yml

Python-Project-Skeleton, Release 0.3.1

(continued from previous page)

config:
editorconfig: .editorconfig

exclude_patterns:
- "tests/"
- ".ci/"
- "alphas/"

2.3.7 Code coverage

Codecov

Codecov is used very frequently to report test coverage rates the software under development. Activate your repository
under Codecov as done for any other CI platform. Additional configurations:

• In general settings change the default branch to the latest branch, if that is your preferred settings.

Coveralls

Coveralls is also included in this template skeleton. Again, activate the coveralls profile by linking your repository to
the server (same as with other CI platforms).

The configuration to Coveralls, .coveragerc is the same as of Codecov.

Sending coverage reports

Coverage reports are sent to both Codecov and Coveralls servers during the Travis-tox -cover environment.
.travis.yml configuration handles this and you do not need to worry about nothing else.

The options specific to Codecov report (actually coverage package) are described in .coveragerc file, mirrored bellow,
description of the configuration file is provided as comments.

[paths]
source =

src

*/site-packages

[run]
branch = true
source =

sampleproject
parallel = true

[report]
show_missing = true
precision = 2
omit = *migrations*
exclude_lines =

if __name__ == .__main__.:

The .coveragerc can be expanded to further restraint coverage analysis, for example adding these lines to the
exclude tag:

2.3. CI Platforms 9

https://pypi.org/project/coverage/
https://github.com/joaomcteixeira/python-project-skeleton/blob/latest/.travis.yml
https://pypi.org/project/coverage/
https://github.com/joaomcteixeira/python-project-skeleton/blob/latest/.coveragerc

Python-Project-Skeleton, Release 0.3.1

[report]
exclude_lines =

if self.debug:
pragma: no cover
raise NotImplementedError
if __name__ == .__main__.:

2.4 Read the Docs

Activate your project at Read the Docs platform (RdD), their web interface is easy enough to follow without further
explanations. If your documentation is building under the tox workflow it will build in at Read the Docs.

2.4.1 Docs Requirements

Requirements to build the documentation page are listed in docs/requirements.txt:

sphinx>=2.2
sphinx-py3doc-enhanced-theme
sphinx-argparse
CommonMark
mock

In this repository we are using Sphinx as documentation builder and the sphinx-py3doc-enhanced-theme as theme,
though you can use many different theme flavors, see Sphinx Themes.

2.4.2 Build version

By default, RdD has two main documentation versions (also called builds): the latest and the stable. The latest points
to the master branch while the stable points to the latest GitHub tag. Therefore, every time changes are pushed to the
master branch a new build in the latest version of the documentation is created, while the stable version is built only
when new tags are created.

However, for many projects it is desirable a different setup where the master branch holds the stable version, that is, the
code referent to the latest tag, while another branch (usually named latest or develop) set to the repositories’ default,
holds the latest development code that has not yet been merged to the master and considered stable. This is the setup
of this template repository. Under this setup, it is desirable that the documentation build referent to the latest version
points to the latest branch, the stable doc build will always point to the latest tag. This can be edited in Admin ->
Advanced Settings and Default version and Default branch.

2.4.3 Google Analytics

Read the Docs allows straight forward implementation of Google Analytics tracking in the project documentation, just
follow their instructions.

10 Chapter 2. Repository Configuration

https://readthedocs.org/
http://www.sphinx-doc.org/en/master/
https://github.com/ionelmc/sphinx-py3doc-enhanced-theme
https://sphinx-themes.org/
https://python-project-skeleton.readthedocs.io/en/latest/
https://python-project-skeleton.readthedocs.io/en/stable/
https://github.com/joaomcteixeira/python-project-skeleton/tree/master
https://github.com/joaomcteixeira/python-project-skeleton/tags
https://github.com/joaomcteixeira/python-project-skeleton/tree/latest
https://docs.readthedocs.io/en/stable/guides/google-analytics.html

Python-Project-Skeleton, Release 0.3.1

2.5 Badges

Badges point to the current status of the different Continuous Integration tools, for example, Travis-CI or Appveyor,
but also documentation and code quality reports.

This project has two badge groups, one for the master (stable) branch and other for the latest (develop) branch. By
showing information for these two groups the development team can keep track on the improvements (or losses) on
code quality or the success of the different building processes.

Each platform provide their own badges, yet you can further tune the badges style by creating your own personalized
badge with Shields.io.

You will notice that the badge for Code Climate is missing in the master branch. I could not find yet a straightforward
and easy implementation for several branches at Code Climate, so, the badge reports on the main branch set for the
repository, in this case the latest branch. Also at Shields.io there is no shortcut to branch for this platform as there is
for others.

I observed this same issue for COVERALLS, but then I realize that after the first commit to the master, COVERALLS
actually displays nicely the information for both branches.

2.5. Badges 11

https://shields.io/

Python-Project-Skeleton, Release 0.3.1

12 Chapter 2. Repository Configuration

CHAPTER

THREE

INSTALLATION

In this page you can describe the installation steps required for end-users, use the Contribution page to provide the
guidelines for developers.

3.1 Installation Example

At the command line:

pip install sampleproject

3.2 How to use this Template

To use this template for your projects use the green button at the main repository page.

13

https://github.com/joaomcteixeira/python-project-skeleton

Python-Project-Skeleton, Release 0.3.1

14 Chapter 3. Installation

CHAPTER

FOUR

USAGE

Describe here examples on how to use your software!

To use SampleProject in a project:

import sampleproject

15

Python-Project-Skeleton, Release 0.3.1

16 Chapter 4. Usage

CHAPTER

FIVE

CONTRIBUTING

Here we explain how to contribute to a project that adopted this template. Actually, you can use this same scheme
when contributing to this template.

5.1 Fork this repository

Fork this repository before contributing. It is a better practice, possibly even enforced, that only Pull Request from
forks are accepted. In my opinion this creates a cleaner representation of the whole contributions to the project.

5.2 Install for developers

First, clone the repository as described in the section above.

Create a dedicated Python environment where to develop the project.

If you are using pip follow the official instructions on Installing packages using pip and virtual environments, most
likely what you want is:

python3 -m venv pyprojskel
source pyprojskel/bin/activate

If you are using Anaconda go for:

conda create --name pyprojskel python=3.7
conda activate pyprojskel

Where pyprojskel is the name you wish to give to the environment dedicated to this project.

Either under pip or conda, install the package in develop mode, and also tox.

python setup.py develop
for pip
pip install tox bumpversion
for conda
conda install tox bumpversion -c conda-forge

Under this configuration the source you edit in the repository git folder is automatically reflected in the development
installation.

Continue your implementation following the development guidelines described bellow.

17

https://github.com/joaomcteixeira/python-project-skeleton/network/members
https://github.com/joaomcteixeira/python-project-skeleton/network
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/#creating-a-virtual-environment
https://www.anaconda.com/

Python-Project-Skeleton, Release 0.3.1

5.3 Branch workflow

The following applies to external contributors, yet main developers can also follow these guidelines.

Branch workflow for development and contribution should follow the Gitflow Workflow guidelines. Please read careful
through that guide. Here we highlight the general approach with some tasteful additions such as the --no-ff flag.

5.3.1 Clone your fork

Indeed the first thing to do is to clone your fork, and keep it up to date with the upstream:

git clone https://github.com/YOUR-USERNAME/python-project-skeleton.git
cd into/cloned/fork-repo
git remote add upstream git://github.com/joaomcteixeira/python-project-skeleton.git
git fetch upstream
git pull upstream latest

5.3.2 New feature

To work on a new feature, branch out from the latest branch:

git checkout latest
git checkout -b feature_branch

Develop the feature and keep regular pushes to your fork with comprehensible commit messages.

5.3.3 Push to latest

To see your development accepted in the main project, you should create a Pull Request to the latest branch
following the PULLREQUEST.rst guidelines.

Before submitting a Pull Request, verify your development branch passes all tests as described bellow . If you
are developing new code you should also implement new test cases.

If you are an official contributor to this repository, have write permissions, and are sure the new feature branch passes
tests, directly merge to the latest branch.

You should bump a patch beforehand.

on your feature_branch
bumpversion patch --no-tag
git push origin feature_branch
git checkout latest
git merge --no-ff feature_branch
git push origin latest

The --no-ff option avoids Fastforward merging (1, 2), keeping a record of the branching out/in history.

18 Chapter 5. Contributing

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://gist.github.com/CristinaSolana/1885435
https://github.com/joaomcteixeira/python-project-skeleton/pulls
https://github.com/joaomcteixeira/python-project-skeleton/blob/latest/docs/PULLREQUEST.rst
https://git-scm.com/docs/git-merge#Documentation/git-merge.txt---no-ff
https://stackoverflow.com/questions/9069061/what-is-the-difference-between-git-merge-and-git-merge-no-ff

Python-Project-Skeleton, Release 0.3.1

5.3.4 To official contributors

Release Branches

Create a short lived branch to prepare for the release candidate, in this example release/0.1.0.

git checkout latest
git checkout -b release/0.1.0

Fix the final bugs, docs and minor corrections, and finally bump the version.

first commit and push your changes
then bump
bumpversion patch|minor|major
git push origin release/0.1.0

Finally, merge to master AND from master to latest.

git checkout master
git merge --no-ff release/0.1.0
git push origin master --tags
git checkout latest
git merge --no-ff master

Hotfixes from master

The hotfix strategy is applied when a bug is identified in the production version that can be easily fixed.

git checkout master
git checkout -b hotfix_branch

Work on the fix. . .

push yours commits to GitHub beforehand
git push origin hotfix_branch
bumpversion patch
git push origin hotfix_branch --tags
git checkout master
git merge --no-ff hotfix_branch
git push origin master
git checkout latest
git merge --no-ff master
git push origin latest

5.4 Uniformed Tests

Thanks to Tox we can have a uniform testing platform where all developers are forced to follow the same rules and,
above all, all tests occur in a controlled Python environment.

With Tox, the testing setup can be defined in a configuration file, the tox.ini, which contains all the operations that are
performed during the test phase. Therefore, to run the unified test suite, developers just need to execute tox, provided
tox is installed in the Python environment in use.

5.4. Uniformed Tests 19

https://tox.readthedocs.io/en/latest/
https://github.com/joaomcteixeira/python-project-skeleton/blob/latest/tox.ini
https://tox.readthedocs.io/en/latest/install.html

Python-Project-Skeleton, Release 0.3.1

pip install tox
or
conda install tox -c conda-forge

Todo: Review and consider integrating using tox to setup development envs -> https://tox.readthedocs.io/en/latest/
example/devenv.html

One of the greatest advantages of using Tox together with the src layout, aside from uniforming the testing routines
across developers, is that tests scripts actually perform against an installed source (our package) inside an isolated
deployment environment. In order words, tests are performed in an environment simulating a post-deployment state
instead of a pre-deploy/development environment. Under this setup, there is no need, in general cases, to deploy test
scripts along with the actual source, in my honest opinion - see MANIFEST.in.

Todo: Discuss the need to deploy test scripts.

Before creating a Pull Request from your branch, certify that all the tests pass correctly by running:

tox

These are exactly the same tests that will be performed in the CI Platforms.

Also, you can run individual environments if you wish to test only specific functionalities, for example:

tox -e check # code style and file compatibility
tox -e spell # spell checks documentation
tox -e docs # only builds the documentation

5.5 Bumpversion

I found two main version string handlers around: bumpversion and versioneer. I chose bumpversion for this repository
template. Why? I have no argument against versioneer or others, simply I found bumpversion to be so simple, effective
and configurable that I could only adopt it. Congratulations to both projects nonetheless.

20 Chapter 5. Contributing

https://tox.readthedocs.io/en/latest/example/devenv.html
https://tox.readthedocs.io/en/latest/example/devenv.html
https://github.com/joaomcteixeira/python-project-skeleton/blob/latest/MANIFEST.in
https://pypi.org/project/bumpversion/
https://github.com/warner/python-versioneer
https://pypi.org/project/bumpversion/

CHAPTER

SIX

SOURCE DOCUMENTATION

6.1 sampleproject

Initial documentation of SampleProject.

6.2 AModule

Main DOCSTRING for amodule.

With several lines.

amodule.hello()
Print ‘hello module’.

6.3 Libs

General Libraries for the project.

samplemodule that performs sample operations.

Contains:

• sampleclass

class sampleproject.libs.samplemodule.SampleClass
Documentation of the SampleClass.

classmethod false()
Docstrings should not start with Returns. . .

Nonetheless, returns False

static true()
Return True my friend.

21

Python-Project-Skeleton, Release 0.3.1

22 Chapter 6. Source documentation

CHAPTER

SEVEN

CHANGELOG

7.1 v0.3.1 (2021-01-22)

• Synchronized CHANGELOG with .bumpversion

7.2 v0.3.0 (2021-01-22)

• simplifies setup.py

• defines rules for CHANGELOG.rst

• adds check tox env to py37 machine

7.3 v0.2.2 (2021-01-22)

• Updates CI framework to GitHub Actions

• adds action to automate version bump and package build to PyPI

• completes CI for Linux, Windows, and MacOS

• reports test coverage to Codecov

• updated/enhanced bump2version configuration

• bump2version also changes CHANGELOG

7.4 v0.2.1 (2020-05-31)

• updated tox to accepts posargs in pytest and flake8

23

Python-Project-Skeleton, Release 0.3.1

7.5 v0.2.0 (2020-01-31)

• Implemented Travis-CI for Windows, MacOSX and Linux * for Python: 3.6, 3.7 and 3.8 * all previous without
using anaconda expect for MacOSX 3.8 * I have nothing against Anaconda ;-), on the contrary, I use it everyday.

• Improved tox.ini workflow to my current favorite standards.

• Implemented mock strategy to avoid installing dependencies for documentation generation. * TOXENV docs

7.6 v0.1.0 (2019-10-03)

• First release on PyPI.

24 Chapter 7. Changelog

CHAPTER

EIGHT

AUTHORS

• Joao M. C. Teixeira (webpage, github)

25

https://bit.ly/joaomcteixeira
https://github.com/joaomcteixeira

Python-Project-Skeleton, Release 0.3.1

26 Chapter 8. Authors

CHAPTER

NINE

INDICES AND TABLES

• genindex

• modindex

• search

27

Python-Project-Skeleton, Release 0.3.1

28 Chapter 9. Indices and tables

PYTHON MODULE INDEX

a
amodule, 21

s
sampleproject, 21
sampleproject.libs, 21
sampleproject.libs.samplemodule, 21

29

Python-Project-Skeleton, Release 0.3.1

30 Python Module Index

INDEX

A
amodule

module, 21

F
false() (sampleproject.libs.samplemodule.SampleClass

class method), 21

H
hello() (in module amodule), 21

M
module

amodule, 21
sampleproject, 21
sampleproject.libs, 21
sampleproject.libs.samplemodule, 21

S
SampleClass (class in samplepro-

ject.libs.samplemodule), 21
sampleproject

module, 21
sampleproject.libs

module, 21
sampleproject.libs.samplemodule

module, 21

T
true() (sampleproject.libs.samplemodule.SampleClass

static method), 21

31

	Python Package Skeleton Template
	Summary
	Motivation
	Acknowledgments
	How to use this repository
	Version

	Repository Configuration
	Branch organization
	Project Layout
	CI Platforms
	Read the Docs
	Badges

	Installation
	Installation Example
	How to use this Template

	Usage
	Contributing
	Fork this repository
	Install for developers
	Branch workflow
	Uniformed Tests
	Bumpversion

	Source documentation
	sampleproject
	AModule
	Libs

	Changelog
	v0.3.1 (2021-01-22)
	v0.3.0 (2021-01-22)
	v0.2.2 (2021-01-22)
	v0.2.1 (2020-05-31)
	v0.2.0 (2020-01-31)
	v0.1.0 (2019-10-03)

	Authors
	Indices and tables
	Python Module Index
	Index

